Tag Archives: circuit-tree

Guide for creating PCB Design from Scratch with circuit tree

Here is a guide for a new user as well as provide details to a user about the design flow.

Let us start with a example wherein you select a design suggested in our post. The post contains a am3352 processor from texas instrument and is fairly popular among engineers. In the example we create create design schematic for a olimex board.

Evaluation of circuit tree with olimex am3352 board

To start with, login to the site Circuit tree tool and you will enter at the requirement editor section.

A clear design requirements editor will have only Board Entry Power block on the editor area similar to shown in the figure below

1

On the left side from the library menu look for the Texas instrument Processor AM3352 then drag and drop the block to the editor area. Once block will be placed a Board Entry Power menu will be popped out similar to one shown in the screenshot. Select the connector, input voltage range and type of the power and press Save changes button.

2           3

Once the processor is on editor area user can continue to place other peripheral devices according to their requirements, Click the expand icon of the TI AM3352 processor and design option windows will appear. Select the appropriate options and click save changes button to go back to the editor.

4   5

From the library menu look for the Ethernet library and place the block to the editor. Once the block is placed in editor area Ethernet Library menu will be opened. Select the library functions from the drop down list that includes all Ethernet supported modes. For the demonstration we are picking parts and modes similar to the Olimex AM3352 SOM board. Click the Get Parts button and wait for the application to choose best suited part. If the selected part is not you are looking for the click the expand button on ‘Select other Matching Parts’ section.

7   8

A window will be popped up with all other available parts of the family. Select the suitable part and click Save changes button. There are other device specific options available for user to choose from, click the button indicated by arrow on selected part and application will take you to the available design options.

Select the appropriate options and press Save changes button on both opened windows and this will take you back to the editor area with all selected options saved in engine’s database.

12   11

To copy the olimex SOM board design, repeat all previous steps to add another Ethernet PHY to the editor area. Once done adding Ethernet PHYs to the board look for the DDR3/L Memory Library from the library menu. Select the library function options and click Get Parts button to let the application select respective part then click Save changes button to go back to the editor area.

19  20

To add NAND memory to your board look for the Parallel Memory  Library and place the block to the editor area. In Library Functions drop down menu select the NAND option and click Get Parts button. If the selected part is right click save changes button or click button represented by arrow in Select other Matching Parts.

22     23

Look for the 8GB NAND memory and then click the radio button to select the part and then click save changes button on both windows to go back to the editor area.

24 25

To add SD card support to your design place the SD Library to your design and choose from the SDHC connector, Micro SD Connector and emmc memory. Click the Get Parts and once application finished loading part click save changes button to go back to the editor area.

27 28

For debugging, CT also support debug connectors to be placed on the board. Place the JTAG library on the editor and select ARM 2X10 Connector or other from the library function options. Click get parts button and then click save changes button to finish placing JTAG connector and to transfer the control to the main editor.

30 31

Circuit tree also includes CAN transceivers for industrial and automotive designs. Place the CAN library from the library menu and click the Get parts button on library menu. To change the selected part click the expand button on the Select Other Matching Parts section.

33 34

As our guide is based on the Olimex SOM board and to follow the same parts, look for the SN65HVD230D CAN transceiver check the radio button and click to save changes button to go back to the CAN library window. Click the expand button in selected part section to explore more device specific options. Once device specific options are selected click save changes button to complete the CAN part selection.

35 36

Next peripheral to add to the design is USB, application supports USB 2.0, USB 3.0 and ULPI transceivers. To add USB to the design look for the USB Library and place to the editor area, select the library functions and click Get Parts button to let the application select the suitable part. Once the part is selected click the save changes button to finish the wizard. Repeat the steps for OTG and HOST peripheral connectors.

40 41

Circuit tree also allow user to route connector to any interfaces to connector peripherals externally to the board. To add connector to the design, look for the connector block in components library. Once the connector is added to the editor a window will be popped out for connector options. Select the proper sizing of the connector and number convention and click save changes button. Note the connector designator that will be used in next step.

48

Next add UART block to the editor area, now here is a new thing instead of looking for parts click the expand icon under ‘Route Interface to Connector’ section and the connector configuration window will be popped up. Select rout the interface option and connector designator from the previous step. Once done click save changes button to finish routing connector to the interface.

50 51

Same can be done with SPI and I2C interfaces, to add connector to SPI interface place Serial Memory Library block from the library menu select SPI and rest of the process is same. For I2C interface, in Serial Memory Library select I2C from the library functions drop down menu and repeat the same process.

The menu’s are easy to use and the interface has been created for quick turnaround of the design.


Short Introduction to Circuit tree

Circuit-tree is a circuit board design software application having the intelligence of a hardware engineer to create embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Here is an introduction video to circuit tree:

To start building your circuit board design now click on Access Tool.


How we check our designs?

For solving any problem you need wonderful teamwork to attempt and create a perfect circuit board design software application. We value the quality of circuit board designs produced as we want to be judged based on that and nothing else. The challenge here is that every design created by circuit tree is unique. It is manually next to impossible to even check all the drawings. We just cannot.

We had anticipated this problem early on and planned multi tier check. Here they are

  • During model creation. All our components are added in our hardware proprietary models. These models have number of fields which are scraped from the datasheets and other design information. These models are verified and reverified to ensure that the information presented matches the information available.
  • Scripts. We use a lot of scripts to test the models for correctness. These scripts are updated whenever we find issues in the models.
  • Model in action. The models are used with a tested processor to check different functional conditions along with its circuit board circuit options.
  • Generated design validation. We again use a lot of scripts to different possible conditions. The code has check to check various conditions. Like our circuit board design software application application the test infrastructure is also maturing.
  • Experienced Hardware designer application review. Here we have a senior engineer involved whose main work is run the application and report the issues. Other than the design he also looks for issues in BOM, exported designs. Most of the issues are web-based which are passed back to the development team for rectification.

Thank you for your time.


Short Introduction to Circuit tree

Circuit tree is a circuit board design software application having the intelligence of a hardware engineer to create PCB embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Here is an introduction video to circuit tree:

To start building your circuit board design now click on Access Tool.


Automated Part selection

I was reading one of the silab blogs and came across an article that highlights some of the first hurdle electronics engineers come across from a design to design. Here is a snippet


Every electronic circuit need is different, however, and your solution to your problem will need specific circuits to solve that problem most efficiently and cost effectively.

So you have an idea for an electronic gadget…great! The trickiest step in the whole process is figuring out which electronic components, or parts, are needed to make up your circuits. This is not a step to be taken lightly. There are a billion ways to solve any problem and seemingly a billion parts out there to help you do it. First off, you have to find the components that make your solution possible, and then you will likely need to refine the design such that it is economically viable and power efficient. There are so many parts out there that it is hard for anyone to know all of the possible options. It takes a lot of research.

Often, electronics designers stick to what they know and have experience working on from past projects. This is with good reason; part specifications can be long, confusing, and sometimes inaccurate documents. Designing with something that you already know can vastly improve the chances of the prototypes working in short order. However, technology is always moving forward, and new parts can combine functions of other parts or improve cost and performance over past technologies. “

Well, these are problems that are easily solved with circuit tree.

Let us consider a case where you need to start a new processor design. You will have to start by going through a lot of documentation, errata’s, reference design, check-lists to go through the design and then understand how to start designing new hardware. Imagine the effort it takes to create this design/idea into a product. With circuit tree it is simple, pick the processor you want to choose, select from a variety of peripherals and components, choose power requirements and the intelligent engine creates a design that you can download to use or further customize.

Circuit tree now supports close to 1000 processors and a number of peripherals components. Generate instant schematic design and much-awaited PCB placement in a few minutes to bring your product closer to completion using the application.

Login to our server to check out the online EDA application. 


Short Introduction to Circuit tree

Circuit-tree is a circuit board PCB design software application having the intelligence of a hardware engineer to create embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Here is an introduction video to circuit tree:

 

Schematic Pages of interest you should visit when using Circuit tree application

Introduction

Circuit tree is a online platform to generate a embedded design schematic and PCB placement using a easy to use editor with online library components. The  hardware compiler generates the design in  minutes and we have used the platform to generate thousands of designs and schematics. Whenever a schematic is generated for a given set of requirements, the application output always surprises and baffles us with something new. We get excited to see the generated output as we in no way control

  1. Component selection unless pre-selected from requirement page.
  2. Pin mux selection of the processor
  3. Power and its sequencing, clock, reset generation on the board
  4. Schematic Symbol generation
  5. Circuit connections on board
  6. Schematic Page creation.

This is the amount of variability the application has. This unconstrained output is however tested thoroughly before the schematic is displayed.

Continuing with the above thought we would like to share some of the most dynamic schematic connections generated so that you can understand that each created design is unique and the effort we have invested to ensure that the designs delivered to you are correct.

Use Cases

For this discussion we will be using the hardware compilers and its library components.

  1. When visiting stm32f407 look out how the usb connections are generated. Some of the requirements pictures are posted below in the figure. Also you can select ulpi and try exploring these pages too.

    USB requirement for stm32f407

    USB requirement for stm32f407

  2. When using imx6 controller select rgmii/rmii/mii interface in ethernet  or try pcie implementation. Look how the power sequencing takes places when rgmii phy with two power up voltage steps and imx6 with four power up ramp up steps ramp with with the  remaining circuit.
  3. When using the atmel same70 controller check how the usb connections vary based on the host or device requirement. Here is the final twister. Atmel microcontrollers requires that vddio supply should be above 3.0V when usb connections are being used. Use the atmel_same70q_example1 to commit requirement when
    1. Usb block is present
    2. Usb block is deleted from the requirement page

atmel_usb_conn

There are lot more interesting ways in which the circuit changes and we enjoy exploring these creations. Keep exploring and don’t forget to share your feedback about the application.

Need More

We have many more designs to prove that the circuit tree hardware compiler out there. Visit our github directory to know more about the automated design deliverables.