Category Archives: Guide

Circuit-Tree Hardware Compiler Detailed Feature List

At Circuit Tree we have number of embedded board components and features which allow you to build a custom board quickly and reliably.  There is new list of items which our users have requested which we are working on.

Here are the list of peripheral interfaces supported which the hardware compiler supports:

  1. DDR3/DDR3L memory library
    1. Supports 8 Bit/16 Bit memories for a bus size of 8 bit to 64 wide bit.
    2. Added VTT termination support
    3. Support for multiple memory manufacturers.
    4. Additional features select options from the hardware compiler:
      1. Memories selected based on datarate, cas latency, single/dual die option.
      2. Hardware compiler is Intelligent to route DQS and Data group connection to various memory type based on the 8 Bit/16bit memories and the bus connection needed
      3. Route the ddr3 Bus Connections to any connector to provide capability to add plug in card.
  2. Parallel Memory library:
    1. Asynchronous Nor [16 Bit] -Various memory sizes
    2. Synchronous Nor [16 Bit] -Various memory sizes
    3. Nand Flash 8 bit -Various memory sizes
    4. Async Sram 16 Bit -Various memory sizes
    5. Additional features select options from the hardware compiler:
      1. Control memory selection based on the memory density and manufacturer
      2. Bus connections can be routed to a connector to provide capability to add plug in card.
  3. Serial Memory Library:
    1. QSPI, SPI,I2c -Various memory sizes and manufacturers
    2. Additional features the hardware compiler:
      1. Select Based on memory density, manufacturer
      2. Select addresses needed for each i2c device
      3. Bus connections can be routed to a connector to provide capability to add plug in card.
  4. Ethernet Library:
    1. Wide number of transceivers supported for:
      1. Sgmii,GMII, Rgmii,RMII and MII
      2. Additional features select options from the hardware compiler:
        1. Auto selection of transceivers and option to change the transceiver to
          one of the transceivers from menu option. Auto routing for MDC/MDIO
          signals for all the transceivers.
        2. Ethernet transceivers connections are routed to the integrated magnetics.
        3. Option to change management bus address, features and functions of the
          selected transceivers.
        4. Bus connections can be routed to a connector to provide capability to add plug in card.
  5. USB Library:
    1. ULPI Transceivers
    2. USB2.0 and USB3.0 differential from processor/micro-controllers
      1. Option to select USB Host, device, OTG mode.
      2. ESD protection diodes are added by default.
      3. Power fault protection circuitry
      4. Multiple peripheral support.
    3. Additional features select options from the hardware compiler:
      1. Select USB Host, device, OTG mode (Connectors, USB power
        switch, configurations and connections are done automatically by circuit-tree).
      2. Select multiple ULPI transceivers.
      3. Bus connections can be routed to a connector to provide capability to add plug in card.
  6. Display library:
    1. Graphics LCD
    2. OLED LCD
    3. TFT LCD
    4. HDMI differential signals
    5. LVDS connection using display Bus
    6. HDMI output Using display bus
    7. DVI output using display bus
    8. Additional features select options from the hardware compiler:
      1. Option to select Component configuration
      2. Bus connections can be routed to a connector to provide capability to add plug in card.
  7. Wireless Library:
    1. WIFI modules
    2. Bluetooth module
    3. NFC module
    4. Radio 2.4Ghz module
    5. Zigbee module
    6. GPS module
    7. Additional features select options from the hardware compiler:
      1. Component configuration
  8. Sensor Library:
    1. Temperature
    2. Accelerometer
    3. Humidity
    4. Compass
    5. Pressure
    6. Gyroscope
    7. RTC
    8. Additional features select options from the hardware compiler:
      1. Component selection from various vendors
  9. UART library
    1. RS232  transceivers of various vendors
    2. Additional features select options from the hardware compiler:
      1. Option to route the signals to DB9 or a 2×5 header
      2. Option to route any custom connector.
  10. Jtag Library:
    1. ARM Jtag 2×10 header
    2. ARM Jtag 2×5 header
    3. ARM SWI 2×5 header
    4. ARM SWI 2×10 header
    5. Additional features select options from the hardware compiler:
      1. Option to route the Jtag signals to any custom connector.
  11. PCIe library:
    1. Mini PCIe slot
    2. PCie x1, x4 and x8
    3. Additional features select options from the hardware compiler:
      1. Option to route the PCIe signals to any custom connector.
  12. SATA library:
    1. Sata connector without power from the board.
    2. Additional features select options from the hardware compiler:
      1. Option to route the SATA signals to any custom connector.
  13. SD library:
    1. SDHC connector
    2. or choose Emmc Memory
    3. Additional features select options from the hardware compiler:
      1. Option to route the sd signals to any custom connector.
  14. Audio library:
    1. Audio transceivers from various vendors
    2. Additional features select options from the hardware compiler:
      1. Option to select audio transcievers
      2. Option to select part features such as number of Microphones ,speaker etc
      3. Option to route the audio signals to any custom connector.
  15. CAN library:
    1. CAN transceivers
    2. Additional features select options from the hardware compiler:
      1. Option to select CAN transceiver
      2. Option to select features for a transceiver
      3. Select DB9 or a different connector to have the CAN signals routed to be connected to another CAN device.
      4. Option to route the CAN signals to any custom connector.
  16. Camera Library:
    1. Library contains Camera PCB Module and sensor.
    2. Additional features select options from the hardware compiler:
      1. Option to select Camera part from different manufacturer
      2. Option to select features for a camera pcb module.
      3. Option to route the camera signals to any custom connector.
  17. GPIO/ADC/DAC Library:
    1. Get the number of GPIO’s, ADC’s DAC’s needed for an application. The hardware compiler would select pins from processor/micro-controller to be added to a header for connection.
  18. Button/LED Library
    1. various leds are added on the board as per function needs of the board.

There is a lot of other finer details which we support. If you have additional questions then visit faq section or feel free to write back with your questions at info@circuit-tree.com

To start testing these features today visit our hardware compiler site.

Circuit Tree has number of followers in hackaday and in ST Microelectronics community.

Checkout the hackaday page.

Ten quick reasons to use circuit tree in your next embedded PCB board design

1. Save Design Time and Cost by quickly creating automatic schematic and pcb placement design with any of the 1000 processors or micro-controllers. We dont store any circuit board designs and all design are auto generated on the fly. Get the most intelligent component placement recommendation for the board.

Circuit-tree-designs3


 

2. Wide range of processors and micro-controller parts from Texas-intrument, Nvidia, St micro, Atmel or NXP.

supported_semiconductor_vendors


 

3. Export your design creations to popular Cadence orcad , Mentor pads, Eagle and Altium for further customisations. Designs remain yours forever.

pcb-vendors2


 

4. Quick Product cost estimate. Get real time cost from octopart and PCB house for the pcb cost.

bill of material excel sheet generated from octopart

bill of material excel sheet generated from octopart


 

5. Support for variety of board form factors such as Computer on Module, System on Module and Various form factor boards.

various-periphearl


 

6. Large peripheral library along with growing list of components. Change components on the fly for the design and get a new design created in 60 seconds.


 

7. Assured quality. We go the extra mile to ensure that the designs generated are correct.

 


 

8. We value your Privacy. We don’t sell personal information to another site.


 

9. Growing Artificial Design Engine that grows with every user interaction and part addition in library. artificial-intelligence-in-embedded-pcb-design


 

10. Site has been created by engineers for engineers.


 

Short Introduction to Circuit tree

Circuit tree is a circuit board design software application having intelligence of a hardware engineer to create embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Here is a introduction video to circuit tree:

To start building your circuit board design now click on Access Tool.


 

Pain Points for Electronic Engineers

Few years back element14 conducted a survey to find the paint points which a electronic engineer faces. It is a interesting read available at :

Element14 survey results

Well it is not surprising that the pain points presented in few years old study are still valid today. Here are the summary of these:

  1. Initial design stages (before prototype assembly and testing) typically require the most time and effort to gather all the necessary information.
  2. There’s never enough time to properly utilize every relevant source.
  3. Incomplete information is common across relevant sources.
  4. Managing customer and vendor relations throughout the design process can be complicated, consuming even more time and resources.

At circuit tree we are trying to solve these pain points . Circuit tree is completely automated and auto-generates for your embedded circuit board designs

  1. Build design schematic design in Eagle and Altium
  2. Real Time Bom cost with octopart.
  3. Integrated footprints

The application is completely automated and one stop for all the information you may need. It has been designed to  provide a reliable designs and helps you jump start your embedded circuit board design quickly.

Let us know what do think about our application tool capability in solving these problems.


 

Short Introduction to Circuit tree

Circuit tree is a online EDA application having intelligence of a hardware engineer to create embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Short introduction to Circuit Tree:

To start building your circuit board design now click on Access Tool.


 

Guide for creating Design from Scratch with circuit tree

Here is a guide for a new user as well as provide details to a user about the design flow.

Let us start with a example wherein you select a design suggested in our post. The post contains a am3352 processor from texas instrument and is fairly popular among engineers. In the example we create create design schematic for a olimex board.

Evaluation of circuit tree with olimex am3352 board

To start with, login to the site Circuit tree tool and you will enter at the requirement editor section.

A clear design requirements editor will have only Board Entry Power block on the editor area similar to shown in the figure below

1

On the left side from the library menu look for the Texas instrument Processor AM3352 then drag and drop the block to the editor area. Once block will be placed a Board Entry Power menu will be popped out similar to one shown in the screenshot. Select the connector, input voltage range and type of the power and press Save changes button.

2           3

Once the processor is on editor area user can continue to place other peripheral devices according to their requirements, Click the expand icon of the TI AM3352 processor and design option windows will appear. Select the appropriate options and click save changes button to go back to the editor.

4   5

From the library menu look for the Ethernet library and place the block to the editor. Once the block is placed in editor area Ethernet Library menu will be opened. Select the library functions from the drop down list that includes all Ethernet supported modes. For the demonstration we are picking parts and modes similar to the Olimex AM3352 SOM board. Click the Get Parts button and wait for the application to choose best suited part. If the selected part is not you are looking for the click the expand button on ‘Select other Matching Parts’ section.

7   8

A window will be popped up with all other available parts of the family. Select the suitable part and click Save changes button. There are other device specific options available for user to choose from, click the button indicated by arrow on selected part and application will take you to the available design options.

Select the appropriate options and press Save changes button on both opened windows and this will take you back to the editor area with all selected options saved in engine’s database.

12   11

To copy the olimex SOM board design, repeat all previous steps to add another Ethernet PHY to the editor area. Once done adding Ethernet PHYs to the board look for the DDR3/L Memory Library from the library menu. Select the library function options and click Get Parts button to let the application select respective part then click Save changes button to go back to the editor area.

19  20

To add NAND memory to your board look for the Parallel Memory  Library and place the block to the editor area. In Library Functions drop down menu select the NAND option and click Get Parts button. If the selected part is right click save changes button or click button represented by arrow in Select other Matching Parts.

22     23

Look for the 8GB NAND memory and then click the radio button to select the part and then click save changes button on both windows to go back to the editor area.

24 25

To add SD card support to your design place the SD Library to your design and choose from the SDHC connector, Micro SD Connector and emmc memory. Click the Get Parts and once application finished loading part click save changes button to go back to the editor area.

27 28

For debugging, CT also support debug connectors to be placed on the board. Place the JTAG library on the editor and select ARM 2X10 Connector or other from the library function options. Click get parts button and then click save changes button to finish placing JTAG connector and to transfer the control to the main editor.

30 31

Circuit tree also includes CAN transceivers for industrial and automotive designs. Place the CAN library from the library menu and click the Get parts button on library menu. To change the selected part click the expand button on the Select Other Matching Parts section.

33 34

As our guide is based on the Olimex SOM board and to follow the same parts, look for the SN65HVD230D CAN transceiver check the radio button and click to save changes button to go back to the CAN library window. Click the expand button in selected part section to explore more device specific options. Once device specific options are selected click save changes button to complete the CAN part selection.

35 36

Next peripheral to add to the design is USB, application supports USB 2.0, USB 3.0 and ULPI transceivers. To add USB to the design look for the USB Library and place to the editor area, select the library functions and click Get Parts button to let the application select the suitable part. Once the part is selected click the save changes button to finish the wizard. Repeat the steps for OTG and HOST peripheral connectors.

40 41

Circuit tree also allow user to route connector to any interfaces to connector peripherals externally to the board. To add connector to the design, look for the connector block in components library. Once the connector is added to the editor a window will be popped out for connector options. Select the proper sizing of the connector and number convention and click save changes button. Note the connector designator that will be used in next step.

48

Next add UART block to the editor area, now here is a new thing instead of looking for parts click the expand icon under ‘Route Interface to Connector’ section and the connector configuration window will be popped up. Select rout the interface option and connector designator from the previous step. Once done click save changes button to finish routing connector to the interface.

50 51

Same can be done with SPI and I2C interfaces, to add connector to SPI interface place Serial Memory Library block from the library menu select SPI and rest of the process is same. For I2C interface, in Serial Memory Library select I2C from the library functions drop down menu and repeat the same process.

The menu’s are easy to use and the interface has been created for quick turnaround of the design.


 

Short Introduction to Circuit tree

Circuit tree is a circuit board design software application having intelligence of a hardware engineer to create embedded circuit board designs. It features more than 1000+ processors and controllers along with extended hardware peripheral library.

Here is a introduction video to circuit tree:

To start building your circuit board design now click on Access Tool.